Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6845, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514851

RESUMO

Land degradation by deforestation adversely impacts soil properties, and long-term restoration practices have been reported to potentially reverse these effects, particularly on soil microorganisms. However, there is limited knowledge regarding the short-term effects of restoration on the soil bacterial community in semiarid areas. This study evaluates the bacterial community in soils experiencing degradation (due to slash-and-burn deforestation) and restoration (utilizing stone cordons and revegetation), in comparison to a native soil in the Brazilian semiarid region. Three areas were selected: (a) under degradation; (b) undergoing short-term restoration; and (c) a native area, and the bacterial community was assessed using 16S rRNA sequencing on soil samples collected during both dry and rainy seasons. The dry and rainy seasons exhibited distinct bacterial patterns, and native sites differed from degraded and restoration sites. Chloroflexi and Proteobacteria phyla exhibited higher prevalence in degraded and restoration sites, respectively, while Acidobacteria and Actinobacteria were more abundant in sites undergoing restoration compared to degraded sites. Microbial connections varied across sites and seasons, with an increase in nodes observed in the native site during the dry season, more edges and positive connections in the restoration site, and a higher occurrence of negative connections in the degradation site during the rainy season. Niche occupancy analysis revealed that degradation favored specialists over generalists, whereas restoration exhibited a higher prevalence of generalists compared to native sites. Specifically, degraded sites showed a higher abundance of specialists in contrast to restoration sites. This study reveals that land degradation impacts the soil bacterial community, leading to differences between native and degraded sites. Restoring the soil over a short period alters the status of the bacterial community in degraded soil, fostering an increase in generalist microbes that contribute to enhanced soil stability.


Assuntos
Bactérias , Solo , RNA Ribossômico 16S/genética , Brasil , Bactérias/genética , Acidobacteria/genética , Microbiologia do Solo
2.
J Environ Manage ; 351: 119746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071918

RESUMO

Land desertification poses a significant challenge in the Brazilian semiarid region, encompassing a substantial portion of the country. Within this region, the detrimental effects of human activities, particularly unsuitable anthropic actions, have resulted in diminished vegetation cover and an accelerated rate of soil erosion. Notably, practices such as overgrazing and the conversion of native forests into pasturelands have played a pivotal role in exacerbating the process of land desertification. Ultimately, land desertification results in significant losses of soil organic matter and microbial diversity. To address this pressing issue and contribute to the existing literature, various land restoration practices, such as grazing exclusion, cover crops, and terracing, have been implemented in the Brazilian semiarid. These practices have shown promising results in terms of enhancing soil fertility and restoring microbial properties. Nonetheless, their effectiveness in improving soil microbial properties in the Brazilian semiarid region remains a subject of ongoing study. Recent advances in molecular techniques have improved our understanding of microbial communities in lands undergoing desertification and restoration. In this review, we focus on assessing the effectiveness of these restoration practices in revitalizing soil microbial properties, with a particular emphasis on the soil microbiome and its functions. Through a critical assessment of the impact of these practices on soil microbial properties, our research aims to provide valuable insights that can help mitigate the adverse effects of desertification and promote sustainable development in this ecologically sensitive region.


Assuntos
Conservação dos Recursos Naturais , Solo , Humanos , Microbiologia do Solo , Brasil , Florestas , China
3.
Sci Rep ; 13(1): 16040, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749306

RESUMO

Silicon (Si) fertilization is widely recognized to improve the development of crops, especially in tropical soils and cultivation under dryland management. Herein, our working hypothesis was that Si stoichiometry favors the efficient use of carbon (C), nitrogen (N), and phosphorus (P) in sugarcane plants. Therefore, a field experiment was carried out using a 3 × 3 factorial scheme consisting of three cultivars (RB92579, RB021754 and RB036066) and three forms of Si application (control without Si; sodium silicate spray at 40 mmol L-1 in soil during planting; sodium silicate spray at 40 mmol L-1 on leaves at 75 days after emergence). All Si fertilizations altered the elemental C and P stoichiometry and sugarcane yield, but silicon-induced responses varied depending on sugarcane cultivar and application method. The most prominent impacts were found in the leaf Si-sprayed RB92579 cultivar, with a significant increase of 7.0% (11 Mg ha-1) in stalk yield, 9.0% (12 Mg ha-1) in total recoverable sugar, and 20% (4 Mg ha-1) in sugar yield compared to the Si-without control. In conclusion, our findings clearly show that silicon soil and foliar fertilization alter C:N:P stoichiometry by enhancing the efficiency of carbon and phosphorus utilization, leading to improved sugarcane production and industrial quality.


Assuntos
Saccharum , Silício , Grão Comestível , Carbono , Carboidratos da Dieta , Fósforo , Solo , Fertilização
4.
Microbiol Res ; 274: 127435, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37331053

RESUMO

Soybean-maize are cultivated in different management systems, such as no-tillage and pastures, which presents potential to add organic residues, and it can potentially impacts the soil microbial community present in these systems. Thus, this study aimed to examine the effects of different soybean-maize management practices on the diversity and composition of soil microbial communities. Specifically, 16 S rRNA amplicon sequencing was used to investigate whether the use of pasture species in a fallowing system influences microbial communities in a soybean-maize rotation system, as compared to conventional tillage and no-tillage systems. The results indicate that the inclusion of the pasture species Urochloa brizantha in soybean-maize management systems leads to distinct responses within the soil microbial community. It was found that different soybean-maize management systems, particularly those with U. brizantha, affected the microbial community, likely due to the management applied to this pasture species. The system with 3 years of fallowing before soybean-maize showed the lowest microbial richness (∼2000 operational taxonomic units) and diversity index (∼6.0). Proteobacteria (∼30%), Acidobacteria (∼15%), and Verrucomicrobia (∼10%) were found to be the most abundant phyla in the soil under tropical native vegetation, while soils under cropland had an increased abundance of Firmicutes (∼30% to ∼50%) and Actinobacteria (∼30% to ∼35%). To summarize, this study identified the impacts of various soybean-maize management practices on the soil microbial community and emphasized the advantages of adding U. brizantha as a fallow species.


Assuntos
Microbiota , Solo , Solo/química , Zea mays/microbiologia , Glycine max , Microbiologia do Solo
5.
Chemosphere ; 328: 138581, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019406

RESUMO

Imazethapyr and flumioxazin are widely recommended herbicides for soybean fields due to their broad-spectrum effects. However, although both herbicides present low persistence, their potential impact on the community of plant growth-promoting bacteria (PGPB) is unclear. To address this gap, this study assessed the short-term effect of imazethapyr, flumioxazin, and their mixture on the PGPB community. Soil samples from soybean fields were treated with these herbicides and incubated for 60 days. We extracted soil DNA at 0, 15, 30, and 60 days and sequenced the 16S rRNA gene. In general, the herbicides presented temporary and short-term effects on PGPB. The relative abundance of Bradyrhizobium increased, while Sphingomonas decreased on the 30th day with the application of all herbicides. Both herbicides increased the potential function of nitrogen fixation at 15th days and decreased at 30th and 60th days of incubation. The proportions of generalists were similar (∼42%) comparing each herbicide and the control, while the proportion of specialists increased (varying from 24.9% to 27.6%) with the application of herbicides. Imazethapyr, flumioxazin and their mixture did not change the complexity and interactions of the PGPB network. In conclusion, this study showed that, in the short term, the application of imazethapyr, flumioxazin, and their mixture, at the recommended field rates, does not negatively affect the community of plant growth-promoting bacteria.


Assuntos
Herbicidas , Herbicidas/análise , RNA Ribossômico 16S/genética , Solo , Bactérias/genética , Glycine max
6.
Chemosphere ; 313: 137487, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36521745

RESUMO

Composted tannery sludge (CTS) promotes shifts in soil chemical properties, affecting microbial communities. Although the effect of CTS application on the bacterial community has been studied, it is unclear whether this impact discriminates between the dominant and rare species. This present study investigated how the dominant and rare bacterial communities respond over time to different concentrations of CTS application (0, 2.5, 5, 10, and 20 tons/ha) for 180 days. The richness of operational taxonomic units (OTU) was 30-fold higher in the rare than in the dominant biosphere. While some phyla shifted their relative abundance differently in the dominant and rare biosphere, some genera increased their relative abundance under higher CTS concentrations, such as Nocardioides (∼100%), Rubrobacter (∼300%), and Nordella (∼400%). Undominated processes largely governed the dominant biosphere (76.97%), followed by homogeneous (12.51%) and variable (8.03%) selection, and to a lesser extent, the dispersal limitation (2.48%). The rare biosphere was driven by the CTS application as evidenced by the exclusively homogeneous selection (100%). This study showed that the rare biosphere was more sensitive to changes in soil chemical parameters due to CTS application, which evidences the importance explore this portion of the bacterial community for its biotechnological use in contaminated soils.


Assuntos
Microbiota , Solo , Solo/química , Esgotos/química , Microbiologia do Solo , Bactérias/genética , RNA Ribossômico 16S
7.
Chemosphere ; 313: 137417, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460149

RESUMO

Chromium (Cr) contamination can affect microorganisms in the soil, but the response of the microbial community in the rhizosphere of plants grown in Cr-contaminated soils is poorly understood. Therefore, this study assessed the microbial community, by amplicon sequencing, in the rhizosphere of maize and cowpea growing in uncontaminated (∼6.0 mg kg-1 Cr) and Cr-contaminated soils (∼250 mg kg-1 Cr). Comparing Cr-contaminated and uncontaminated soils, the microbial community in the maize rhizosphere clustered separately, while the microbial community in the cowpea rhizosphere did not present clear clustering. The microbial richness ranged from ∼5000 (rhizosphere in Cr-contaminated soil) to ∼8000 OTUs (in uncontaminated soil). In the comparison of specific bacterial groups in the rhizosphere of maize, Firmicutes were enriched in Cr-contaminated soil, including Bacilli, Bacillales, and Paenibacillus. Cowpea rhizosphere showed a higher abundance of six microbial groups in Cr-contaminated soil, highlighting Rhizobiales, Pedomicrobium, and Gemmatimonadetes. The microbial community in both rhizospheres presented a similar proportion of specialists comparing uncontaminated (2.2 and 3.4% in the rhizosphere of maize and cowpea, respectively) and Cr-contaminated soils (1.8 and 3.2% in the rhizosphere of maize and cowpea, respectively). This study showed that each plant species drove differently the microbial community in the rhizosphere, with an important effect of Cr-contamination on the microbial community assembly.


Assuntos
Microbiota , Poluentes do Solo , Vigna , Cromo/análise , Rizosfera , Zea mays , Microbiologia do Solo , Bactérias , Solo , Firmicutes , Poluentes do Solo/análise
8.
Microb Ecol ; 85(4): 1423-1433, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35525854

RESUMO

Plants modulate the soil microbiota and select a specific microbial community in the rhizosphere. However, plant domestication reduces genetic diversity, changes plant physiology, and could have an impact on the associated microbiome assembly. Here, we used 16S rRNA gene sequencing to assess the microbial community in the bulk soil and rhizosphere of wild, semi-domesticated, and domesticated genotypes of lima bean (Phaseolus lunatus), to investigate the effect of plant domestication on microbial community assembly. In general, rhizosphere communities were more diverse than bulk soil, but no differences were found among genotypes. Our results showed that the microbial community's structure was different from wild and semi-domesticated as compared to domesticated genotypes. The community similarity decreased 57.67% from wild to domesticated genotypes. In general, the most abundant phyla were Actinobacteria (21.9%), Proteobacteria (20.7%), Acidobacteria (14%), and Firmicutes (9.7%). Comparing the different genotypes, the analysis showed that Firmicutes (Bacillus) was abundant in the rhizosphere of the wild genotypes, while Acidobacteria dominated semi-domesticated plants, and Proteobacteria (including rhizobia) was enriched in domesticated P. lunatus rhizosphere. The domestication process also affected the microbial community network, in which the complexity of connections decreased from wild to domesticated genotypes in the rhizosphere. Together, our work showed that the domestication of P. lunatus shaped rhizosphere microbial communities from taxonomic to a functional level, changing the abundance of specific microbial groups and decreasing the complexity of interactions among them.


Assuntos
Microbiota , Phaseolus , Phaseolus/genética , Phaseolus/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Domesticação , RNA Ribossômico 16S/genética , Microbiota/genética , Proteobactérias/genética , Plantas , Acidobacteria/genética , Solo/química , Microbiologia do Solo
9.
Microb Ecol ; 85(3): 1072-1076, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35633375

RESUMO

Soils from Brazilian semiarid regions are highly vulnerable to desertification due to their geology, climate, human actions, and intensive land use that contribute to desertification. Therefore, areas under desertification have increased in the Brazilian semiarid region and it has negatively changed the soil bacterial and archaeal communities and their functionality. On the other hand, although restoration strategies are expensive and there are few soils restoration programs, some practices have been applied to restore these soils under desertification. For instance, conservationist practices and grazing exclusion have been strategically implemented, and they created a new altered soil condition for soil microbial communities, boosting soil microbial diversity. Here, we discuss the potential of these restoration strategies to recover the richness and diversity of soil bacterial and archaeal communities that were described through environmental DNA (eDNA) sequencing of soil samples. eDNA sequencing results show that areas where restoration strategies have been applied in regions under desertification in the Brazilian semiarid have increased species richness, diversity, and structure of the bacterial and archaeal community. In addition, network connectivity and functionality of the soil microorganisms have been improved over time. Altogether, we show that management strategies for soil restoration have positive effects on soil microbial communities and these effects can be monitored using the eDNA sequencing approach.


Assuntos
Archaea , DNA Ambiental , Humanos , Archaea/genética , Solo/química , Conservação dos Recursos Naturais , Brasil , Microbiologia do Solo , Bactérias/genética , RNA Ribossômico 16S/genética
10.
Arch Microbiol ; 204(12): 730, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434407

RESUMO

Bacteria have potential to tolerate and reduce metals. This study evaluated the potential of selected bacterial strains in tolerating and reducing chromium (Cr). Six bacterial strains (Rhizobium miluonense LCC01, LCC04, LCC05, and LCC69; Rhizobium pusense LCC43; and Agrobacterium deltaense LCC50) showed tolerance to Cr(VI) (16 and 32 µg mL-1), reduction potential of Cr(VI) (from 50 to 80%), and efficiency in producing exopolysaccharides. Rhizobium pusense LCC43 exhibited the highest tolerance (128 µg mL-1), reduction potential of Cr(VI) (from 80 to 100%), and efficiency in producing exopolysaccharides. These results suggested that this strain may have the potential to be used in the bioremediation of soils contaminated with Cr(VI).


Assuntos
Bactérias , Cromo , Oxirredução , Bactérias/genética
11.
Environ Sci Pollut Res Int ; 29(50): 75113-75118, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36085223

RESUMO

The tannery industries generate a solid waste known as tannery sludge, which is composed of organic and inorganic compounds, mainly chromium (Cr). When Cr is not removed from the tannery sludge, this solid waste is metal-rich and its application could affect the soil microorganisms. Alternatively, the composting of the tannery sludge can contribute to decreasing the concentration of Cr in the composted tannery sludge (CTS). However, in some cases, the concentration of Cr remains high in the CTS. During the last 10 years, the Cr-rich CTS has been successively applied in the soil, and its effect on soil microbial properties was verified. Here, we discuss the effect of successive applications of Cr-rich CTS on soil microbes. Interestingly, the findings have shown that successive applications of Cr-rich CTS selected specific soil microbial groups with potential functions. In addition, the studies added a new focus to further research evaluating the potential effect of successive applications of Cr-rich CTS on the rare microbial community.


Assuntos
Compostagem , Poluentes do Solo , Bactérias , Biomassa , Cromo/análise , Esgotos/microbiologia , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Resíduos Sólidos , Curtume
12.
Microbiol Res ; 264: 127161, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35987172

RESUMO

Soil desertification has a significant social, economic, and environmental impact worldwide. Mycorrhizal diversity remains poorly understood in semiarid regions impacted by desertification, especially in Brazilian drylands. More importantly, positive impacts of grazing exclusion on mycorrhizal communities are still incipient. Here, we hypothesized that overgrazing changes the structure of Arbuscular Mycorrhizal Fungi (AMF) community compared to native areas and, grazing exclusion is effective to restore the AMF community. Thus, we analyzed the status of AMF community in soils under desertification (overgrazing) and restoration (twenty-years of grazing exclusion) in the Brazilian semiarid. AMF-spores were extracted via humid decantation methodology, morphologically classified, and alpha diversity metrics were calculated. Soil samples were chemically, and physically characterized and multivariate statistical analyses were applied to verify the impact of soil degradation and restoration on AMF-community. Briefly, native, and restored areas presented higher contents of organic matter, phosphorus, microbial carbon, and ß-glucosidase activity. However, degraded soil showed higher Al3+, Na+, and bulk soil density values. The abundance of AMF spores was higher in restored soil, followed by degraded and native vegetation, and Shannon's diversity index was significantly higher in restored soils, followed by native vegetation. AMF-spores were classified into four families (Gigasporaceae > Acaulosporaceae > Glomeraceae > Ambisporaceae). Ambisporaceae was closed correlated with degraded soil, mainly with Al3+, Na+, and bulk soil density properties. On the other hand, Acaulosporaceae and Glomeraceae were positively correlated with native vegetation and restored soil, respectively, thereby improving Shannon index, richness, enzyme activity, and soil respiration. Thus, grazing exclusion, in long term, can be a good strategy to restore AMF-diversity in soils in the Brazilian semiarid.


Assuntos
Glomeromycota , Micorrizas , Brasil , Conservação dos Recursos Naturais , Fungos , Humanos , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Esporos Fúngicos
13.
Sci Rep ; 12(1): 3472, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236879

RESUMO

Plant breeding reduces the genetic diversity of plants and could influence the composition, structure, and diversity of the rhizosphere microbiome, selecting more homogeneous and specialized microbes. In this study, we used 16S rRNA sequencing to assess the bacterial community in the rhizosphere of different lines and modern cowpea cultivars, to investigate the effect of cowpea breeding on bacterial community assembly. Thus, two African lines (IT85F-2687 and IT82D-60) and two Brazilian cultivars (BRS-Guariba and BRS-Tumucumaque) of cowpea were assessed to verify if the generation advance and genetic breeding influence the bacterial community in the rhizosphere. No significant differences were found in the structure, richness, and diversity of bacterial community structure between the rhizosphere of the different cowpea genotypes, and only slight differences were found at the OTU level. The complexity of the co-occurrence network decreased from African lines to Brazilian cultivars. Regarding functional prediction, the core functions were significantly altered according to the genotypes. In general, African lines presented a more abundance of groups related to chemoheterotrophy, while the rhizosphere of the modern cultivars decreased functions related to cellulolysis. This study showed that the genetic breeding process affects the dynamics of the rhizosphere community, decreasing the complexity of interaction in one cultivar. As these cowpea genotypes are genetically related, it could suggest a new hypothesis of how genetic breeding of similar genotypes could influence the rhizosphere microbiome.


Assuntos
Rizosfera , Vigna , Bactérias/genética , Genótipo , Melhoramento Vegetal , Raízes de Plantas/microbiologia , Plantas/genética , RNA Ribossômico 16S/genética , Microbiologia do Solo , Vigna/genética , Vigna/microbiologia
14.
Data Brief ; 41: 107842, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35128002

RESUMO

The data included in this article supplement the research article titled "Forest-to-pasture conversion modifies the soil bacterial community in Brazilian dry forest Caatinga (manuscript ID: STOTEN-D-21-19067R1)". This data article included the analysis of 18 chemical variables in 36 composite samples (included 4 replicates) of soils from the Microregion of Garanhuns (Northeast Brazil) and also partial 16S rRNA gene sequences from genomic DNA extracted from 27 of these samples (included 3 best quality replicates) for paired-end sequencing (up to 2 × 300 bp) in Illumina MiSeq platform (NCBI - BioProject accession: PRJNA753707). Soils were collected in August 2018 in a tropical subhumid region from the Brazilian Caatinga, along with 27 composite samples from the aboveground part of pastures to determine nutritional quality based on leaf N content. The analysis of variance (ANOVA) and post-hoc tests of environmental data and the main alpha-diversity indices based on linear mixed models (LMM) were represented in the tables. In this case, the collection region (C1 - Brejão, C2 - Garanhuns, and C3 - São João) was the random-effect variable and adjacent habitats formed by a forest (FO) and two pastures (PA and PB succeeded by this forest) composed the fixed-effect variable (land cover), both nested within C. In addition, a table with similarity percentages breakdown (SIMPER) was also shown, a procedure to assess the average percent contribution of individual phyla and bacterial classes. The figures showed the details of the study location, sampling procedure, vegetation status through the Normalized Difference Vegetation Index (NDVI), in addition to the general abundance and composition of the main bacterial phyla.

15.
Sci Total Environ ; 810: 151943, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864020

RESUMO

Soils comprise a huge fraction of the world's biodiversity, contributing to several crucial ecosystem functions. However, how the forest-to-pasture conversion impact soil bacterial diversity remains poorly understood, mainly in the Caatinga biome, the largest tropical dry forest of the world. Here, we hypothesized that forest-to-pasture conversion would shape the microbial community. Thus, the soil bacterial community was assessed using the 16S rRNA gene sequencing into the Illumina MiSeq platform. Then, we analyzed ecological patterns and correlated the bacterial community with environmental parameters in forest, and two distinct pastures areas, one less productive and another more productive. The variation in soil properties in pastures and forest influenced the structure and diversity of the bacterial community. Thus, the more productive pasture positively influenced the proportion of specialists and the co-occurrence network compared to the less productive pasture. Also, Proteobacteria, Acidobacteria, and Verrucomicrobia were abundant under forest, while Actinobacteria, Firmicutes, and Chloroflexi were abundant under pastures. Also, the more productive pasture presented a higher bacterial diversity, which is important since that a more stable and connected bacterial community could benefit the agricultural environment and enhance plant performance, as can be observed by the highest network complexity in this pasture. Together, our findings elucidate a significant shift in soil bacterial communities as a consequence of forest-to-pasture conversion and bring important information for the development of preservation strategies.


Assuntos
Microbiota , Solo , Biodiversidade , Florestas , RNA Ribossômico 16S/genética , Microbiologia do Solo
16.
Braz. arch. biol. technol ; 65: e22200439, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1364460

RESUMO

Abstract: Sugarcane is an important Brazilian commodity, being usually cultivated in soils with low natural fertility. This study aimed to isolate diazotrophic endophytes from sugarcane tissues and evaluate the morphological and physiological characteristics of their colonies as well as their plant growth-promoting (PGP) traits in select diazotrophic endophytic bacteria. Fifty-six bacterial isolates were identified in the sugarcane tissues, and these isolates presented distinct morphological and physiological traits. A total of thirty-five bacterial isolates were biochemically evaluated. Overall, Bacillus was the dominant genus. Isolates of Methylobacterium spp. and Brevibacillus agri were present only in leaves, while Herbaspirillum seropedicae occurred only in stems. Except to IPA-CF45A, all isolates were nitrogenase positive. All endophytes exhibit production of indol 3-acetic acid. Over 50% of endophytes solubilize phosphate, release N-acyl homoserine lactones, and present the activity of 1-aminocyclopropane-1-carboxylic acid deaminase, catalase, lipase and protease. The network analysis showed that isolates belonged to Burkholderia, Herbaspirillum, and Methylobacterium interact with Bacillus. Bacterial endophytes exhibited distinct morphological, physiological, and PGP traits that are useful for sustainable agriculture, highlighting the isolates IPA-CC33, IPA-CF65, IPA-CC9 and IPA-CF27. Further studies on the effects of these diazotrophic endophytes and their potential for providing microbial inoculants for improving sugarcane fields will provide valuable information to maintain the sustainability and environment quality.

17.
Environ Sci Pollut Res Int ; 28(45): 64295-64306, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34304356

RESUMO

The process of composting has been proposed as a biological alternative to improve the quality of tannery sludge (TS) by the action of microbial communities. However, there is limited knowledge about the dynamic of these microbial communities during the composting process. This study assessed the responses of bacterial and archaeal communities during TS composting using the 16S rRNA sequencing. The composting process occurred within 90 days, and samples of compost were collected on day 7 (d7; mesophilic stage), 30 (d30; thermophilic stage), 60 (d60; cooling stage), and 90 (d90; maturation stage). The results showed a succession of microbial phyla during the composting with enrichment of Synergistetes, WS1, and Euryarchaeota at the mesophilic stage, while at the thermophilic stage, there was an enrichment of Hydrogenedentes, WPS-2, Chloroflexi, and Deinococcus-Thermus. At the cooling stage, there was an enrichment of Kiritimatiellaeota, and at the maturation stage, there was an enrichment of Entotheonellaeota, Dadabacteria, Nitrospirae, Dependiatiae, and Fibrobacteres. When analyzing the drivers influencing microbial communities, Cr and pH presented more negative correlations with general phyla. In contrast, S, C, K, temperature, and N presented more positive correlations, while Ni, Cd, and P showed fewer correlations. According to niche occupancy, we observed a decreased proportion of generalists with a consequently increased proportion of specialists following the composting process. This study showed that different stages of the composting present a specific microbial community structure and dynamics, which are related to some specific composting characteristics.


Assuntos
Archaea , Bactérias , Compostagem , Resíduos Industriais , Archaea/genética , Bactérias/genética , RNA Ribossômico 16S/genética , Esgotos , Solo , Curtume
18.
Sci Total Environ ; 789: 147945, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051496

RESUMO

Soil microbial communities act on important environmental processes, being sensitive to the application of wastes, mainly those potential contaminants, such as tannery sludge. Due to the microbiome complexity, graph-theoretical approaches have been applied to represent model microbial communities interactions and identify important taxa, mainly in contaminated soils. Herein, we performed network and statistical analyses into microbial 16S rRNA gene sequencing data from soil samples with the application of different levels of composted tannery sludge (CTS) to assess the most connected nodes and the nodes that act as bridges to identify key microbes within each community. The network analysis revealed hubs belonging to Proteobacteria in soil with lower CTS rates, while active degraders of recalcitrant and pollutant chemical hubs belonging to Proteobacteria and Actinobacteria were found in soils under the highest CTS rates. The majority of classified connectors belonged to Actinobacteria, but similarly to hubs taxa, they shifted from metabolic functional profile to taxa with abilities to degrade toxic compounds, revealing a soil perturbation with the CTS application on community organization, which also impacted the community modularity. Members of Actinobacteria and Acidobacteria were identified as both hub and connector suggesting their role as keystone groups. Thus, these results offered us interesting insights about crucial taxa, their response to environmental alterations, and possible implications for the ecosystem.


Assuntos
Compostagem , Solo , RNA Ribossômico 16S/genética , Esgotos , Microbiologia do Solo
19.
Sci Rep ; 11(1): 831, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33437021

RESUMO

Soil microbial communities represent the largest biodiversity on Earth, holding an important role in promoting plant growth and productivity. However, the knowledge about how soil factors modulate the bacteria community structure and distribution in tropical regions remain poorly understood, mainly in different cowpea producing ecoregions belonging to Northeastern Brazil. This study addressed the bacterial community along three different ecoregions (Mata, Sertão, and Agreste) through the16S rRNA gene sequencing. The results showed that soil factors, such as Al3+, sand, Na+, cation exchange excel, and total organic C, influenced the bacterial community and could be a predictor of the distinct performance of cowpea production. Also, the bacterial community changed between different ecoregions, and some keystone groups related to plant-growth promotion, such as Bradyrhizobium, Bacillales, Rhizobiales, and Solibacillus, were correlated to cowpea yield, so revealing that the soil microbiome has a primordial role in plant productivity. Here, we provide evidence that bacterial groups related to nutrient cycling can help us to increase cowpea efficiency and we suggest that a better microbiome knowledge can contribute to improving the agricultural performance.


Assuntos
Bactérias/genética , Microbiota , RNA Ribossômico 16S/genética , Microbiologia do Solo , Vigna/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , Brasil , Vigna/genética , Vigna/metabolismo
20.
Biosci. j. (Online) ; 37: e37080, Jan.-Dec. 2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1359263

RESUMO

Cajui (Anacardium spp.) is a native fruit tree (small cashew) of the Brazilian Cerrado and possesses the potential for commercialization. However, cajui exploitation occurs exclusively through extractivism in the absence of conservation strategies. The lack of conservation strategies may lead to a decrease in genetic diversity of Anacardium. In this work, the genetic diversity and population structure of three natural populations in Sete Cidades National Park (PNSC; PI, Brazil) were assessed using ISSR analysis of 56 cajui accessions and two A. occidentale accessions (outgroup) from Pacajus (CE, Brazil). A total of 112 markers were obtained, 93 (83.04%) of which were polymorphic. The diversity indices of these populations indicated moderate levels of genetic diversity. According to AMOVA, 96.17% of the genetic variability lay within populations, with low genetic differentiation among populations (ΦST = 0.03828). Furthermore, STRUCTURE analysis indicated the existence of four connected genetic groups. The findings show that the individuals from the three collection sites did not represent different subpopulations, likely due to the high gene flow (Nm = 6.7) favored by the floral biology of Anacardium, pollinators and small-animal seed dispersers. This research identifies genetically divergent individuals (C-03, C-05, C-22, C-26, C-34 and C-39), which should be considered priority individuals for conservation and can inform conservation programs for Anacardium spp.


Assuntos
Variação Genética , Anacardium , Brasil , Pradaria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...